The Evolution of SBRT and Hypofractionation in Thoracic Radiation Oncology

(specifically, lung cancer)

2/10/18

Jeffrey Kittel, MD
Radiation Oncology, Aurora St. Luke’s Medical Center
Outline

• The history of definitive radiotherapy for lung cancer
 - Dose escalation without chemo improves local control
 - Improved technology allows further dose escalation safely
 - Benefit of extreme dose escalation is complicated
 - In modern era, we have hit a wall
 - Technology aside
 - New technologies improve accuracy, open a door

• Searching for a different path
 - Development of SBRT in Japan
 - Phase I in US
 - RTOG 0236 - Changing the game
 - Radiobiology aside
 - Population studies show survival advantage

• Future directions for SBRT
 - Towards ideal fractionation for central/ultracentral
 - Expanding the pool of pts – treating T3
 - RTOG 0915 – can we use 1 fraction?

• Applying the principles of SBRT to stage III
 - Hypofractionation without chemotherapy (60 Gy/15 fx)
 - Hypofractionation with concurrent chemotherapy (RTOG 1106)
 - SBRT boost

• Conclusion
Lung Cancer Staging

- Stage I-II
 - N0-N1
- Stage III
 - Any N2-3
 - (T3N1)
 - (T4N0)

<table>
<thead>
<tr>
<th>T/M</th>
<th>Label</th>
<th>N0</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>T1a ≤1</td>
<td>IA1</td>
<td>IIIB</td>
<td>IIIA</td>
<td>IIIB</td>
</tr>
<tr>
<td></td>
<td>T1b >1-2</td>
<td>IA2</td>
<td>IIIB</td>
<td>IIIA</td>
<td>IIIB</td>
</tr>
<tr>
<td></td>
<td>T1c >2-3</td>
<td>IA3</td>
<td>IIIB</td>
<td>IIIA</td>
<td>IIIB</td>
</tr>
<tr>
<td>T2</td>
<td>T2a Cont. Yisc Pl</td>
<td>IB</td>
<td>IIIB</td>
<td>IIIA</td>
<td>IIIB</td>
</tr>
<tr>
<td></td>
<td>T2a >3-4</td>
<td>IB</td>
<td>IIIB</td>
<td>IIIA</td>
<td>IIIB</td>
</tr>
<tr>
<td></td>
<td>T2b >4-5</td>
<td>IIA</td>
<td>IIIB</td>
<td>IIIA</td>
<td>IIIB</td>
</tr>
<tr>
<td>T3</td>
<td>T3 >5-7</td>
<td>IIB</td>
<td>IIIA</td>
<td>IIIB</td>
<td>IIIB</td>
</tr>
<tr>
<td></td>
<td>T3 Inv</td>
<td>IIB</td>
<td>IIIA</td>
<td>IIIB</td>
<td>IIIB</td>
</tr>
<tr>
<td></td>
<td>T3 Satell</td>
<td>IIB</td>
<td>IIIA</td>
<td>IIIB</td>
<td>IIIB</td>
</tr>
<tr>
<td>T4</td>
<td>T4 >7</td>
<td>IIIA</td>
<td>IIIA</td>
<td>IIIB</td>
<td>IIIB</td>
</tr>
<tr>
<td></td>
<td>T4 Inv</td>
<td>IIIA</td>
<td>IIIA</td>
<td>IIIB</td>
<td>IIIB</td>
</tr>
<tr>
<td></td>
<td>T4 Ipsl Nod</td>
<td>IIIA</td>
<td>IIIA</td>
<td>IIIB</td>
<td>IIIB</td>
</tr>
<tr>
<td>M1</td>
<td>M1a Contr Nod</td>
<td>IVA</td>
<td>IVA</td>
<td>IVA</td>
<td>IVA</td>
</tr>
<tr>
<td></td>
<td>M1a Pl Dissem</td>
<td>IVA</td>
<td>IVA</td>
<td>IVA</td>
<td>IVA</td>
</tr>
<tr>
<td></td>
<td>M1b Single</td>
<td>IVA</td>
<td>IVA</td>
<td>IVA</td>
<td>IVA</td>
</tr>
<tr>
<td></td>
<td>M1c Multi</td>
<td>IVB</td>
<td>IVB</td>
<td>IVB</td>
<td>IVB</td>
</tr>
</tbody>
</table>

Lung Cancer Staging
Radiation for stage III NSCLC

• Current standard of care for unresectable stage III:
 - 60 Gy/30 fx with concurrent chemotherapy

• Management of potentially resectable stage III is controversial
 - Not addressed here
How did we get here?

A (BRIEF) HISTORY OF DEFINITIVE RADIOTHERAPY FOR LUNG CANCER
Dose escalation improves LC

RTOG 73-01

- Unresectable NSCLC
- Randomized
- 40 Gy split course or 40 Gy, 50 Gy, or 60 Gy continuous
 - No chemo
 - Old radiation techniques (2D)
- LC rates increased with dose: 52%, 62%, and 73%, respectively
- No difference in OS (MS ~ 10 mos and 3 yr OS <10%)

Improved technology allows further escalation

RTOG 93-11

- Unresectable NSCLC
- Used 3D technology (CT scans!)
- Ph I-II dose escalation study
- Sequential chemotherapy
- Escalated to 90.3 Gy @ 2.15 Gy/ fx based on dose to normal lung (V20)
- Maximum tolerated dose:
 - 83.8 Gy/39 fx in low V20 group
 - 77.4 Gy/36 fx in high V20 group

Modern era incorporates chemo

- Current standard is concurrent chemotherapy
 - Concurrent > sequential > dose-escalated RT alone
We’ve reached a wall

RTOG 0617

• Stage III, unresectable pts only
• Ph III – 2 x 2 trial
 - Concurrent + consolidation carbo/paclitaxel
 - 74 vs 60 Gy +/- cetuximab
• 74 Gy vs 60 Gy
 - No improvement in LF (1 yr):
 • 24.8% vs 16.3% (p=0.13)
 - Detriment to OS (1 yr):
 • 69.8% vs 80% (p=0.004)

Where do we go from here?

- Stuck with 60 Gy in 2 Gy fractions with chemo?
- Clues from RTOG 0617
 - Allowed 3D conformal OR IMRT
 - Approx 50% each
 - IMRT:
 - Less risk of severe pneumonitis
 - Lower cardiac dose
 - No difference in outcomes – despite more advanced tumors
 - Cardiopulmonary toxicity from dose escalation may have been clinically meaningful
- Further technologic advances may open a door

Quick technology aside

- 2D
- 3D
- IMRT
2D planning

- Oldest technique
- Radiographs are taken with fluoro
- Fields are drawn on radiographs
- Limited ability to spare normal structures
3D conformal radiation

- Uses CT for planning
- Manual planning
 - Desired dose distribution achieved through trial and error
- Moderate ability to spare normal structures
IMRT

- Newest technique
- Computer algorithms try thousands of different plans to optimize dose distribution
- Significantly improves ability to spare normal structures
2D vs 3DCRT vs IMRT

The Future?
New technologies improve accuracy

- 3D motion management
 - 4DCT
 - Breath hold
- CyberKnife
SEARCHING FOR A NEW PATH

The development of SBRT
Lung SBRT

- “Stereotactic body radiation therapy”
- Developed in Japan
- Uses advanced planning and motion management
- High dose to tumor, low dose to everything else
Initial US experience

- **Ph I**
 - 37 pts, medically inoperable
 - Dose escalation from 8 Gy x 3
 - Maximum dose: 20 Gy x 3

- **Ph II**
 - 70 pts, medically inoperable
 - 60-66 Gy in 3 fx
 - LC (2 yr): 95%
 - High toxicity for central tumors

Central “no fly zone”

Defines zone of the proximal bronchial tree
RTOG 0236 – Changing the game

- Ph II multi-institutional
- 55 pts
- Medically inoperable
- “Peripheral” tumors, T1-2 (≤ 5 cm) N0
- 60 Gy in 3 fractions
- Results (long-term update):
 - Primary tumor failure (5 yr): 7%
 - Local failure (tumor + lobe, 5 yr): 20%
 - Regional failure (5 yr): 18%
 - Distant failure (5 yr): 31%
 - OS (5 yr): 40%, median OS: 4 yr

Timmerman R et al. IJROBP Sept 2014 S30 Abstract #56.
High dose, greater effect

- “Biologic equivalent dose”
- “Linear quadratic equation”
 - Based on cell culture exposed to varying doses of radiation
 - Allows conversion between schedules

\[B.E.D. = D \times \left(1 + \frac{d}{\frac{\alpha}{\beta}}\right) \]

- Biologic equivalent dose
- Total dose
- “alpha/beta” ratio
- dose per fraction
BED substantially increased with SBRT

BED[(α/β) =10]:
- Conventional Fractionation
 - 72 Gy: 60 Gy in 30 Fx
 - 84 Gy: 70 Gy in 35 Fx
 - 88.8 Gy: 74 Gy in 37 Fx
- Hypofractionation/SBRT
 - 96 Gy: 60 Gy in 10 Fx
 - 106 Gy: 48 Gy in 4 Fx (Japan Oncology Group)
 - 112.5 Gy: 50 Gy in 4 Fx (MD Anderson, PTV)
 - 119 Gy: 70 Gy in 10 Fx (MD Anderson, GTV)
 - 151.2 Gy: 54 Gy in 3 Fx (RTOG, STAR Trial)
 - 180 Gy: 60 Gy in 3 Fx (RTOG, 80% Isodose)
But why?

- Pro-apoptotic
- Vascular
- Immunologic
Future directions for SBRT

• Central tumors
 - Initially a “no fly zone”
 • High rate of severe toxicity in central patients with 60 Gy/3 fx

Future directions for SBRT

Central tumors

• RTOG 0813 – Ph I-II 50-60 Gy/5 fx
 - Results:
 • 3 G5 toxicities in highest dose cohorts
 • None in 50 Gy/5 fx cohort
 • High local control
• Adaptive: 60 Gy/8 fx, 60-70 Gy/10 fx
 - High BED, excellent control (90%+)
 - Some studies show no G5 toxicities
 - In contrast, other series show higher rates
• Still learning
 - Unclear what is treatment vs tumor related
 - Not all central created equal → “ultracentral”

Future directions for SBRT

• Large tumors
 - RR of 40 pts treated with SBRT
 - All had tumors > 5 cm
 - LC (18 mo): 91.2%
 - G3+ toxicity: 7.5%

Future directions for SBRT

• Chest wall invasion
 - 13 pts, RR
 - LC (1 yr): 89%
 - 2 of 13 (15%) experienced new or worsening CW pain (both grade 2)

Future directions for SBRT

- Single fraction
 - RTOG 0915 – randomized Ph II
 - 48 Gy/4 fx vs 34 Gy/1 fx
 - High local control (1 yr): 92.7 vs 97.0%
 - Statistically similar OS and DFS but numerical differences
 - Needs further study

Future directions for SBRT

- Central tumors can be done safely
 - Moving towards ideal fractionation for ultracentral tumors
- Large tumors (> 5 cm) – safe, effective
- Chest wall invasion – safe, effective
- Single fraction – needs further study, option in poor performing pts
The rise of hypofractionation

APPLYING THE PRINCIPLES OF SBRT TO STAGE III
Hypofractionation for stage III – a new way forward?

- Ph I dose escalation
- “Locally advanced,” stage II-IV
- Pts ineligible for resection, SBRT, or concurrent chemoRT
- 55 pts, 3 dose levels: 50-55-60 Gy in 15 fx
- Used IMRT and respiratory motion management to restrict dose to normal tissues
- Results:
 - MTD not reached
 - Even higher doses well-tolerated
 - No association between dose level and toxicity
 - Median OS 6 mo, no difference between dose levels
- Randomized ph III testing OS in progress

Combining paradigms – hypofractionation and chemoRT

- RTOG 1106
 - Randomized ph II
 - Stage IIIA/IIIB
 - Concurrent carbo/paclitaxel + consolidation x2 cycles
 - 60 Gy/30 fx vs up to 80.4 Gy/30 fx
 - Using mid-treatment PET/CT to adapt volumes
 - Maximum tumor dose scaled to normal tissue dose
 - Primary endpoint: 2 yr locoregional PFS
 - Closed, awaiting results
Combining paradigms – SBRT boost

- **U Kentucky ph II (37 pts)**
 - Residual disease after chemoRT
 - Boost with SBRT to achieve BED 100 Gy
 - Well-tolerated, promising local control

- **Brown ph I (12 pts)**
 - ChemoRT to 50.4 Gy
 - Dose escalation of SBRT boost to primary and LN – 16 to 28 Gy/2 fx
 - MTD not reached, 100% 1 yr LC at higher dose levels

Conclusion

- Technologic advance is allowing new approaches
- Future of thoracic radiation oncology:
 - Higher dose to tumor
 - Less dose to normal tissue
- Awaiting results of recent trials before putting into widespread practice
Thank you
Benefit of dose escalation complicated

- RTOG 93-11 showed no difference in LC or OS
- Multiple other trials showed benefit to dose escalation
 - e.g. Michigan Ph I
 - Escalated to 103 Gy
 - For 63-69, 74-84, and 92-103 Gy:
 - The 5-year control rate was 12%, 35%, and 49%
 - 5-year OS was 4%, 22%, and 28%

Confounding factors muddy the waters

• Heterogenous trials
 - Included stage I-III
 - No PET staging
 - Small trials
 - Variable use of chemo
 • 15-20% of patients
 • Given sequentially
• Even with 3D planning, still old radiation techniques
• High rate of distant failure
Early stage lung cancer is a unique opportunity

- Lower risk of distant failure
 - Local control more important
- Small tumors
- Further from critical structures
A different animal

Locally advanced NSCLC

Early stage NSCLC
Survival improvement with SBRT

- Stage I NSCLC treated with radiotherapy
- VA database
- 11,997 pts
- Adoption of SBRT doubled 4 yr OS (12.7% to 28.5%)

Dose threshold important for maximum control

- LF for BED < 100 Gy: 42.9 vs 8.4%
- Sigmoidal response curve

![Graph showing sigmoidal response curve with data points and fit parameters.](Image)