Development of a Thoracic Robotic Program for Lung Cancer Surgery

William Tisol, MD
Thoracic Surgery
Aurora Health Care
Milwaukee, WI

Milwaukee, WI February 10, 2018
Disclosures

- Intuitive Surgical - Education
Overview

- Robotic History
- Robotic Lobectomy Outcomes Data
- Robotic Financials
- Successful Program Development
Robotic history and an old Grand Rounds presentation...
2006 Grand Rounds...
Following a 1 ½ day pig lab in Hackensack, NJ

Robotic Surgery: A Technology Looking For An Application?

William B. Tisol, MD
Division of Cardiothoracic Surgery
Medical College of Wisconsin
2006 Grand Rounds…
Following a 1 ½ day pig lab in Hackensack, NJ

Brief History of Surgical Robots

- 1985 – Puma 560 used by Kwoh et al for neurosurgical biopsies
- 1988 – PROBOT for prostate resection
2006 Grand Rounds...
Following a 1 ½ day pig lab in Hackensack, NJ

Brief History of Surgical Robots

- Late 80’s – NASA and DOD begin work on telepresence surgery

- Early 90’s - Stanford Research Institute develops dexterous telemanipulator
2006 Grand Rounds…
Following a 1 ½ day pig lab in Hackensack, NJ

Brief History of Surgical Robots

- 1998 – ZEUS surgical robot system
- 1999 – da Vinci surgical robot system
Failed application of proven technology...

- October 14, 1947, Bell X-1 accelerated to a speed of Mach 1.06
- 24 October 2003 British Airways operates last commercial services
2006 Grand Rounds…
Following a 1 ½ day pig lab in Hackensack, NJ

Proven technology failing to meet expectations…
2006 Grand Rounds...
Following a 1 ½ day pig lab in Hackensack, NJ
2006 Grand Rounds...
Following a 1 ½ day pig lab in Hackensack, NJ
2006 Grand Rounds...
Following a 1 ½ day pig lab in Hackensack, NJ

What will the surgical robot become?
Why I became a robotic thoracic surgeon
2006...

• I wanted to evaluate and understand the technology for myself
 • How does this work in my practice
 • Already believed in the benefits of MIS/VATS
• Improved instrument motion
 • 6 Degrees of “wristed” motion versus “sticks”
• 3D optics and 10x magnification
 • Steady and always positioned where you want it
• Improved ergonomics
 • No more “looking over your shoulder”
• Benefits not fully realized until I gained robotic proficiency
 • Need to accept a learning curve
Evolution of Robotic Thoracic Surgery

2006

2009

2014

da Vinci® S™

da Vinci® Si™

da Vinci® Xi™
Aurora Healthcare Robotic Production

17,146 All time cases completed from 2001 through 2017

Aurora All Time Case Total Through 2016

- Aurora St. Luke's Medical Center - WI: 5,336
- Aurora Grafton Medical Center: 1,946
- Aurora BayCare Medical Center: 1,738
- Aurora West Allis Medical Center: 4,003
- Aurora Medical Center - Summit: 490
- Aurora Medical Center - Kenosha: 12
Aurora System 3 Year Robotic Volume Trends

7 Robotic Programs
- 3321 cases 2017
- 52% increase from 2016

13 daVinci Systems
- 10 Xi Systems
- 3 Si System

Variable case mix
- URO, GYN, GYO, GS, THOR, CARD
2R, 4R and 10R Lymphadenectomy
Why minimally invasive surgery benefits patients

Oncologic equivalent to open technique

• Less post operative pain
 • Less post operative pain medication administration
 • Fewer analgesic side effects
 • Nausea
 • Dizziness
 • Constipation
 • Increased mobility
• Fewer complications
 • Pneumonia
 • Ileus
 • DVT
• Shorter LOS
• Accelerated recovery and return to work/recreation
Outcomes data
Aurora Robotic Lobectomy Outcomes

Demographics

N = 256
Male – 38.7%
Mean age – 68.5
Mean BMI – 28.4
Co-morbidities
 DM – 16.9%
 HTN – 62.1%
 CVD – 32.7%
 COPD – 33.5%
 Smoking (former) – 62.5%
 Smoking (current) – 25.4%
Preop CRT – 6.1%
Aurora Robotic Lobectomy Outcomes
Lobectomy Breakdown

RUL - 91
RML - 26
RLL - 35
LUL - 68
LLL - 36
Bi-lobes - 8
Aurora Robotic Lobectomy Outcomes

Pathology

Adenocarcinoma 149 (60.8%)
Squamous cell carcinoma 68 (27.8%)
Other (11.4%)
 Neuroendocrine 3
 Carcinoid 8
 Mixed 2
 Small cell carcinoma 3
 Bronchiectasis 1
 MAC 2
 Metastasis 2
 NED 2
Aurora Robotic Lobectomy Outcomes

Intraoperative

Single Surgeon/Dedicated OR teams
 Median op time – 125 min
 Median console time – 102 min
 Mean Total LN’s – 14.1
 Conversion rate – 2.4%
 Inadequate single lung ventilation – 3 (1.2%)
 Bleeding – 3 (1.2%)
Xi times
Improving…

Xi Console Times (median 99 min)
Operative times

Improving…

![Bar chart showing operative times for 2014, 2015, and 2016. The chart compares OP Time, Console Time, and Non-Console Time. The data shows a trend of improvement over the years.]
Aurora Robotic Lobectomy Outcomes

M&M

A-fib – 7.3% (10.6% - STS)
Pneumonia – 1.6% (3.9%)
30d mortality – 0.4% (0.8%)
LOS 3.0d (4.0d)
Post op transfusion 0.4%
Chest tube >5d – 23.3% (11.5%)
CT duration
 Median 3d
 Mean 6.4d
Chest tube > 5 days, LOS and conversions

Seems intertwined…
Robot Financials
Robot Finance South East Wisconsin

I am not a finance expert...

<table>
<thead>
<tr>
<th>Service Line</th>
<th>Cases</th>
<th>Days</th>
<th>Charges</th>
<th>Paid</th>
<th>Direct Cost</th>
<th>Indirect Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>GASTROENTEROLOGY</td>
<td>12</td>
<td>25</td>
<td>$447,407</td>
<td>$219,987</td>
<td>$110,639</td>
<td>$87,656</td>
</tr>
<tr>
<td>GENERAL</td>
<td>119</td>
<td>266</td>
<td>$4,001,564</td>
<td>$1,749,478</td>
<td>$729,573</td>
<td>$533,259</td>
</tr>
<tr>
<td>UROLOGY</td>
<td>50</td>
<td>75</td>
<td>$1,656,302</td>
<td>$862,053</td>
<td>$263,949</td>
<td>$175,798</td>
</tr>
<tr>
<td>WOMEN'S HEALTH</td>
<td>203</td>
<td>239</td>
<td>$5,655,853</td>
<td>$2,240,809</td>
<td>$1,064,771</td>
<td>$933,660</td>
</tr>
</tbody>
</table>

| Total | 384 | 605 | $11,961,126 | $5,072,327 | $2,168,992 | $1,730,373 |

Per Case Average

<table>
<thead>
<tr>
<th>ALOS</th>
<th>Charges</th>
<th>Paid</th>
<th>Reimb%</th>
<th>Direct Cost</th>
<th>Contribution Margin</th>
<th>Contribution Margin %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$37,264</td>
<td>$18,332</td>
<td>49.2%</td>
<td>$9,225</td>
<td>$9,107</td>
<td>49.7%</td>
</tr>
<tr>
<td>2</td>
<td>$33,627</td>
<td>$14,701</td>
<td>43.7%</td>
<td>$6,131</td>
<td>$8,571</td>
<td>58.3%</td>
</tr>
<tr>
<td>2</td>
<td>$33,126</td>
<td>$17,241</td>
<td>52.0%</td>
<td>$5,279</td>
<td>$11,962</td>
<td>69.4%</td>
</tr>
<tr>
<td>1</td>
<td>$28,847</td>
<td>$11,038</td>
<td>38.3%</td>
<td>$5,245</td>
<td>$5,793</td>
<td>52.5%</td>
</tr>
<tr>
<td>2</td>
<td>$31,149</td>
<td>$13,209</td>
<td>42.4%</td>
<td>$5,648</td>
<td>$7,561</td>
<td>57.2%</td>
</tr>
</tbody>
</table>
Robot Finance South East Wisconsin

I am not a finance expert…

<table>
<thead>
<tr>
<th>ALOS</th>
<th>Charges</th>
<th>Paid</th>
<th>Reimb%</th>
<th>Direct Cost</th>
<th>Contribution Margin</th>
<th>Contribution Margin %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$37,284</td>
<td>$18,332</td>
<td>49.2%</td>
<td>$9,225</td>
<td>$9,107</td>
<td>49.7%</td>
</tr>
<tr>
<td>2</td>
<td>$33,627</td>
<td>$14,701</td>
<td>43.7%</td>
<td>$6,131</td>
<td>$8,571</td>
<td>58.3%</td>
</tr>
<tr>
<td>2</td>
<td>$33,126</td>
<td>$17,241</td>
<td>52.0%</td>
<td>$5,279</td>
<td>$11,962</td>
<td>69.4%</td>
</tr>
<tr>
<td>1</td>
<td>$28,847</td>
<td>$11,038</td>
<td>38.3%</td>
<td>$5,245</td>
<td>$5,793</td>
<td>52.5%</td>
</tr>
<tr>
<td>2</td>
<td>$31,149</td>
<td>$13,209</td>
<td>42.4%</td>
<td>$5,648</td>
<td>$7,561</td>
<td>57.2%</td>
</tr>
</tbody>
</table>
Robot Finance South East Wisconsin

I am not a finance expert…

Reimbursement
Outpatient 26-39%
Inpatient 30-49%
All 31-42%

Contribution Margin
Outpatient 36-77%
Inpatient 48-69%
All 49-76%
Financial Advantage
Open v. VATS v. Robotic Lobectomy

Potential Cost Offsets
Clinical Measures - Lobectomy

- **Length of Stay (days)**
 - OPEN (N=5,913)*
 - VATS (N=4,612)*
 - DAVINCI (N=108)

- **Transfusions (percentage)**
 - OPEN
 - VATS
 - DAVINCI

- **Major Complications (percentage)**
 - OPEN
 - VATS
 - DAVINCI

- **OR Room Time (minutes)**
 - OPEN
 - VATS
 - DAVINCI

Cost:
- $1,553 (per bed day)
- $1,142 (per transfusion)
- $7,657 (per complication)
- $11 (per minute)

Estimated Cost Savings Per Procedure
- $5,508 vs. Open
- $1,523 vs. VATS

Estimated Total Cost Savings
- $563,823 vs. Open
- $161,426 vs. VATS

Be aware of your environment

Abbas Abbas, MD

Cost of Care

- Capital cost
- Instrument cost
- OR time

- Salaries
- Administrative overhead
- Non-robotic instrument expense
- Length of Stay
- Conversions
- Complications
- Readmissions
- Surgical Infections
Revenue and Return

- Contribution margin
- Net margin

- Marketing return
- Competitive tool
- Educational tool
- Research tool
Robot Lobectomy Program and Successful Program Development
Development areas requiring attention

Surgeon

Team

Program
Room Set up
Planning and dry run essential.
Lobectomy Maps

RUL and LUL
MIS Pathway

We can do cool stuff in the OR but…

MIS Lobectomy Pathway

<table>
<thead>
<tr>
<th>Period</th>
<th>Pre-Operative Clinic</th>
<th>Intra-Operative</th>
<th>Post-Op Day of Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assess</td>
<td>- Clinic: CT scan (3mo) - ECOG - smoking hx/cessation counseling - dx/stage (if known) May order if not done pre-clinic - PET (60d) - PFT (6mo) - needle bx for dx</td>
<td>Pre-op testing - EKG (6mo) M>40, F>50 - CBC, CMP, INR (30d) - A1C # DM (3mo) - T&S (14d) - UA w/ reflex (30d) - MRSA swab (14d)</td>
<td>Update H&P with EKG review - Mark correct surgical site - Patient bed status (inpt vs obs) - Signed consent - CXR (reviewed and documented w/in 4hr of anesthesia end time) - PACU - Anesthesia for pain control - Transfer to floor (3W/3/9ST) - Higher acuity patients to ICU - Patient will have 5 incisions, 1 with chest tube</td>
</tr>
<tr>
<td>Consults</td>
<td>- Cardiology for clearance if appropriate PT</td>
<td>Anesthesia</td>
<td>Pulmonary/Critical Care as needed</td>
</tr>
<tr>
<td>SCIP measures</td>
<td>- Beta-blocker am of surg if appropriate Antibiotics ordered</td>
<td></td>
<td>Foley d/c HS</td>
</tr>
<tr>
<td>Nutrition</td>
<td>- Nutrition class - NPO after midnight</td>
<td></td>
<td>Clear 第二天 - Up in chair for all meals</td>
</tr>
<tr>
<td>Activity</td>
<td>- Ad lib</td>
<td></td>
<td>Ambulate within 4-6 hrs of arrival from PACU - Progressive ambulation every 4h around the clock</td>
</tr>
<tr>
<td>Treatment</td>
<td>- Stop ASA/anticoagulation 5 days before surgery (unless starts) Hibiclens scrub pm before and am of surgery</td>
<td>Clip surgical site - Foley placed (if surg >1.5h) - Peripheral IV - Time Out</td>
<td>CT to gravity (-8cm suction) - Mucinex - RT/HHN per order - I5, cough and deep breathing q1h/every TV commercial - IVF @100 ml/h - Tele for 72h</td>
</tr>
<tr>
<td>Pain Mgmt</td>
<td>- Paravertebral block by anesthesia</td>
<td></td>
<td>Oxycodone for pain (PCA if uncontrolled) - NO Toradol unless ordered by thoracic surgery</td>
</tr>
<tr>
<td>D/C needs</td>
<td>- Patient and family education about surgery and expectations of hospitalization</td>
<td>Patient extubated in OR</td>
<td>Resume home meds as appropriate</td>
</tr>
</tbody>
</table>

Note: The table above outlines the pre-operative, intra-operative, and post-operative phases of a MIS lobectomy pathway. The table includes specific procedures, diagnostics, and guidelines for patient care.

Aurora Health Care®
MIS Pathway

We can do cool stuff in the OR but…

MIS Lobectomy Pathway

<table>
<thead>
<tr>
<th>Period</th>
<th>POD #1-D/C</th>
<th>D/C Criteria</th>
<th>Post-op Clinic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assess</td>
<td>POD #1-D/C</td>
<td>1. CT out or to pneumostat/mini-atrium</td>
<td>F/U in 2 weeks with CXR (appt. made prior to d/c)</td>
</tr>
<tr>
<td></td>
<td>CXR, portable, daily while CT in CT for flow and output, document output q shift Physical assessment/VS per protocol</td>
<td>Criteria for CT removal: Stable CXR No flow Drainage <400/24h</td>
<td>Post-op CXR Wound check Pain control Discuss pathology and staging Discuss surveillance Smoking cessation</td>
</tr>
<tr>
<td>Consults</td>
<td>POD #1-D/C</td>
<td>2. Tolerating diet</td>
<td>Oncology as needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT/OT Cardiac rehab for thoracic exercises</td>
<td></td>
</tr>
<tr>
<td>SCIP measures</td>
<td>POD #1-D/C</td>
<td>3. Ambulating safely</td>
<td></td>
</tr>
<tr>
<td>Nutrition</td>
<td>POD #1-D/C</td>
<td>4. Voiding (BM not required)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td></td>
<td>5. Tolerating oral pain meds</td>
<td></td>
</tr>
<tr>
<td>POD #1-D/C</td>
<td>PO narcotics Muscle relaxants Lidoderm patch Massage therapy Ice Aromatherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/C needs</td>
<td>POD #1-D/C</td>
<td>Social services as needed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT site occlusive dressing remains on for 48 hrs May shower once occlusive dressing off, no baths Wash incisions daily with soap and water</td>
<td></td>
</tr>
</tbody>
</table>
Surgeon Development

• Patience, practice and perseverance
• Learn the surgeon console
 • Use the simulator
• Assist another surgeon
 • Learn from other’s experiences
 • Understand being at the bedside
• Overcome being away from the table
• Have a plan and set goals
• Accept the learning curve
 • It will take longer at first
What’s the Learning Curve?

Learning to ski…

Figure 1: Learning by Breakthroughs

Figure 2: Continuous Learning

Figure 3: Textbook Learning Curve

Figure 4: Reality
What’s the Learning Curve?

Dr. Lyle Anderson (72) Harrisburg, PA

Learning robotics at a Luminary course today.

What's more impressive he spent >100 hours on the simulator with his CSR Joel Sweigart before the course /

A role model - we never stop learning.
He's going to join RSC later today!
Team Development

- Find volunteers as team members that want to learn the robot
 - Teach your thoracic team the robot
- Build team rapport
- Open communication
- Debrief after case
 - What went right/wrong?
 - What could we do better?
- Be encouraging
- Team sport
Team Development

Knowing your role

<table>
<thead>
<tr>
<th>Robotic Roles</th>
<th>RN</th>
<th>ST</th>
<th>Support (RN)</th>
<th>Assist (ST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Arrives</td>
<td>Robot Cords</td>
<td>Wiping flat surfaces/moving equipment</td>
<td>Setting room around</td>
<td>Starting to open supplies</td>
</tr>
<tr>
<td>Set Up</td>
<td>Look up Pt, Pull up films, Make bed, Pull med, Go for Pt and Pre-case Check-in with Surgeon</td>
<td>Open back table, gowning table, pans, Scrub and Count with RN</td>
<td>Open sterile supplies, count with ST, Drape robot</td>
<td>Open sterile supplies, drape robot</td>
</tr>
<tr>
<td>Patient In Room</td>
<td>Assist Induction, Foley, Clip, Position and Prep</td>
<td>Organize back table, Drape robot</td>
<td>Assist with Positioning, Clipping and Prepping</td>
<td>Assist with Positioning, Clipping and Prepping</td>
</tr>
<tr>
<td>Draping</td>
<td>Plug in cords, lights and Do Time out</td>
<td>Drape Patient, Throw off cords, Port placement</td>
<td></td>
<td>Assist in draping and Port placement</td>
</tr>
<tr>
<td>Ports Placed</td>
<td>Drive in Robot</td>
<td>Instrument arms</td>
<td></td>
<td>Docking, Insert Instruments</td>
</tr>
<tr>
<td>Console Time</td>
<td>Start recording case, Charting, Prepare for next robot (Meds/Look up Pt)</td>
<td>Assist with surgery</td>
<td></td>
<td>Assist with surgery</td>
</tr>
<tr>
<td>Surgeon Off Console</td>
<td>Gas off, Lights up, Switch bowie, Count, Procedure check out, Burn CD and Undrape robot (cords up if last case/moving Robot)</td>
<td>Counts, Help close, Clean instruments and Breakdown table</td>
<td>Help undrape robot and clean up</td>
<td>Help undrape robot and clean up</td>
</tr>
<tr>
<td>Incision Closed</td>
<td>Call PACU and EVS, Dressings get the patient bed to move them off the OR table</td>
<td>Break down tables, Help move the patient onto bed, Take garbage to decontam</td>
<td>Help move Patient onto bed and breakdown room</td>
<td>Help move Patient onto bed, breakdown room</td>
</tr>
<tr>
<td>Pt Transfer to PACU</td>
<td>Drop off Pt, Start next set up</td>
<td>Help housekeeping, Start next set up</td>
<td>Help housekeeping, Start next set up</td>
<td>Help housekeeping, Start next set up</td>
</tr>
</tbody>
</table>
Team Development

Knowing your role

<table>
<thead>
<tr>
<th>Role</th>
<th>Anesthesia</th>
<th>Anesthesia Technician</th>
<th>Surgeon</th>
<th>PA/ NP/ Resident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotic Roles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Team Arrives</td>
<td>See Patient</td>
<td>Check Anesthesia machine</td>
<td>See Patient, Mark site, Sign consent and Do H&P update</td>
<td>See Patient, Mark site if in procedure and do H&P update</td>
</tr>
<tr>
<td>Set Up</td>
<td>Set up medications set out needed supplies for intubation, See Patient, do lines and blocks</td>
<td>Collect needed supplies for intubation (difficult airway cart) help with lines and blocks</td>
<td>Pre Case Check in</td>
<td>Put films up</td>
</tr>
<tr>
<td>Patient in Room</td>
<td>Induction, OG, Bronchoscope (if needed) and help position the patient</td>
<td>Help with induction, (Bronchoscope), Positioning and Placing warming on Patient</td>
<td>Arrive in room, Oversee positioning of patient and Scrub</td>
<td>Oversee positioning of patient and Scrub</td>
</tr>
<tr>
<td>Draping</td>
<td>Draping and table positioning</td>
<td>Check with Anesthesiologist if a blood gas needs to be tested</td>
<td>Draping, Port placement</td>
<td>Draping, Port placement</td>
</tr>
<tr>
<td>Ports Placed</td>
<td>Monitor patient</td>
<td></td>
<td>Docking</td>
<td>Docking, Insert Instruments</td>
</tr>
<tr>
<td>Console Time</td>
<td>Monitor patient</td>
<td></td>
<td>At console</td>
<td>Assist with surgery</td>
</tr>
<tr>
<td>Surgeon Off Console</td>
<td>Monitor patient</td>
<td></td>
<td>Procedure Check out (Sign out Time out) Determine to save recording or not, Scrub and Close</td>
<td>Undock and close</td>
</tr>
<tr>
<td>Incision Closed</td>
<td>Extubation and Transfer Patient onto bed</td>
<td>Help with extubation, Transfer monitoring (if needed) and move Patient onto bed.</td>
<td>Dictate, Orders, See Patient’s family and See next Patient</td>
<td>Dictate, Orders, See Patient’s family and See next Patient</td>
</tr>
<tr>
<td>Pt Transfer to PACU</td>
<td>Drop off Pt, See next Patient</td>
<td>Help drop off patient in ICU (if needed) and Turnover room</td>
<td>See next Patient</td>
<td>Check post op films and See next Patient</td>
</tr>
</tbody>
</table>

Note: The table above outlines the roles and responsibilities for different medical professionals during a procedure.
Achieving Proficiency and Finding Success
Team Sport...

Robotic Surgery Daily Wrap Up Sheet

<table>
<thead>
<tr>
<th>DATE:</th>
<th>ISSUE</th>
<th>SOLUTION</th>
<th>OWNER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Was any needed equipment missing from the room?</td>
<td>Yes ☐</td>
<td>No ☐</td>
</tr>
<tr>
<td></td>
<td>Did you have to remove any unn needed equipment from the room?</td>
<td>Yes ☐</td>
<td>No ☐</td>
</tr>
<tr>
<td></td>
<td>Were any stocked items missing?</td>
<td>Yes ☐</td>
<td>No ☐</td>
</tr>
<tr>
<td></td>
<td>Were any items from preference card missing from case cart?</td>
<td>Yes ☐</td>
<td>No ☐</td>
</tr>
<tr>
<td></td>
<td>Where there any changes that need to be made to the preference card or cards?</td>
<td>Yes ☐</td>
<td>No ☐</td>
</tr>
<tr>
<td></td>
<td>Did you have any issues/problems with the DaVinci system today? Was assistance accessible?</td>
<td>Yes ☐</td>
<td>No ☐</td>
</tr>
<tr>
<td></td>
<td>Was the case picked or scheduled properly?</td>
<td>Yes ☐</td>
<td>No ☐</td>
</tr>
</tbody>
</table>

Comments:

<table>
<thead>
<tr>
<th>Case 1 Scheduled Time</th>
<th>Surgeon:</th>
<th>Case 2 Scheduled Time</th>
<th>Surgeon:</th>
<th>Case 3 Scheduled Time</th>
<th>Surgeon:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Previous case wheels out:

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rm Ready in room</td>
<td>Rm Ready in room</td>
<td>Rm Ready in room</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Start</th>
<th>Docked</th>
<th>Console</th>
<th>Undock</th>
<th>Staff</th>
</tr>
</thead>
</table>

Comments:
Program Development

• Create a Robotic Committee
 • Outcomes and safety
 • Resource utilization
 • Training
• Horizontal integration between surgical specialties including Anesthesia
• Vertical integration from OR to Administration
• Promote milestones and results
Effective Robot Committee Structure

President
 └── C-Suite
 └── Foundation
 └── GS – URO – GYN – GYO – TS – ANES
 └── OR Dir/MGR
 └── Robot Coordinator
 └── ISRG
AURORA MEDICAL CENTER IN GRAFTON
A NATIONAL CASE OBSERVATION SITE FOR
THORACIC ROBOT-ASSISTED SURGERY

• Established January 2016
• 1 of 19 national programs (1 of 2 in Midwest)
• Most visited thoracic observation site in the world - 2017
 • 88 outside visitors hosted
 • 100+ total guests
• Highest rated thoracic observation site
 • Score 9.91/10
• Locations of Visitor’s Home Institution: Wisconsin, Illinois, Indiana, Minnesota, Iowa, California, Nebraska, North Carolina, Ohio, Colorado, Kentucky, Michigan, Arizona, South Dakota, Florida, Georgia, Washington, Texas, Tennessee and China.
Questions?
Surgeon Development

Robotic Case Volume

Aurora Health Care
LLL Pulmonary Artery Stapling – Curved Tip